
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/4800254

An	Autoregressive	Distributed	Lag	Modeling
Approach	to	Co-integration	Analysis

Article	·	February	1995

DOI:	10.1017/CCOL0521633230.011	·	Source:	RePEc

CITATIONS

769

READS

22,754

2	authors:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Disaggregation	View	project

Hashem	Pesaran

University	of	Southern	California

434	PUBLICATIONS			44,963	CITATIONS			

SEE	PROFILE

Yongcheol	Shin

The	University	of	York

109	PUBLICATIONS			33,249	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Yongcheol	Shin	on	12	December	2013.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/4800254_An_Autoregressive_Distributed_Lag_Modeling_Approach_to_Co-integration_Analysis?enrichId=rgreq-495056b735cbea0081a73b4c6132baaa-XXX&enrichSource=Y292ZXJQYWdlOzQ4MDAyNTQ7QVM6MTAxMTMxODA4MTQ5NTE1QDE0MDExMjMxMTA3MjU%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/4800254_An_Autoregressive_Distributed_Lag_Modeling_Approach_to_Co-integration_Analysis?enrichId=rgreq-495056b735cbea0081a73b4c6132baaa-XXX&enrichSource=Y292ZXJQYWdlOzQ4MDAyNTQ7QVM6MTAxMTMxODA4MTQ5NTE1QDE0MDExMjMxMTA3MjU%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Disaggregation?enrichId=rgreq-495056b735cbea0081a73b4c6132baaa-XXX&enrichSource=Y292ZXJQYWdlOzQ4MDAyNTQ7QVM6MTAxMTMxODA4MTQ5NTE1QDE0MDExMjMxMTA3MjU%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-495056b735cbea0081a73b4c6132baaa-XXX&enrichSource=Y292ZXJQYWdlOzQ4MDAyNTQ7QVM6MTAxMTMxODA4MTQ5NTE1QDE0MDExMjMxMTA3MjU%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hashem_Pesaran?enrichId=rgreq-495056b735cbea0081a73b4c6132baaa-XXX&enrichSource=Y292ZXJQYWdlOzQ4MDAyNTQ7QVM6MTAxMTMxODA4MTQ5NTE1QDE0MDExMjMxMTA3MjU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hashem_Pesaran?enrichId=rgreq-495056b735cbea0081a73b4c6132baaa-XXX&enrichSource=Y292ZXJQYWdlOzQ4MDAyNTQ7QVM6MTAxMTMxODA4MTQ5NTE1QDE0MDExMjMxMTA3MjU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Southern_California?enrichId=rgreq-495056b735cbea0081a73b4c6132baaa-XXX&enrichSource=Y292ZXJQYWdlOzQ4MDAyNTQ7QVM6MTAxMTMxODA4MTQ5NTE1QDE0MDExMjMxMTA3MjU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hashem_Pesaran?enrichId=rgreq-495056b735cbea0081a73b4c6132baaa-XXX&enrichSource=Y292ZXJQYWdlOzQ4MDAyNTQ7QVM6MTAxMTMxODA4MTQ5NTE1QDE0MDExMjMxMTA3MjU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yongcheol_Shin?enrichId=rgreq-495056b735cbea0081a73b4c6132baaa-XXX&enrichSource=Y292ZXJQYWdlOzQ4MDAyNTQ7QVM6MTAxMTMxODA4MTQ5NTE1QDE0MDExMjMxMTA3MjU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yongcheol_Shin?enrichId=rgreq-495056b735cbea0081a73b4c6132baaa-XXX&enrichSource=Y292ZXJQYWdlOzQ4MDAyNTQ7QVM6MTAxMTMxODA4MTQ5NTE1QDE0MDExMjMxMTA3MjU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_University_of_York?enrichId=rgreq-495056b735cbea0081a73b4c6132baaa-XXX&enrichSource=Y292ZXJQYWdlOzQ4MDAyNTQ7QVM6MTAxMTMxODA4MTQ5NTE1QDE0MDExMjMxMTA3MjU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yongcheol_Shin?enrichId=rgreq-495056b735cbea0081a73b4c6132baaa-XXX&enrichSource=Y292ZXJQYWdlOzQ4MDAyNTQ7QVM6MTAxMTMxODA4MTQ5NTE1QDE0MDExMjMxMTA3MjU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yongcheol_Shin?enrichId=rgreq-495056b735cbea0081a73b4c6132baaa-XXX&enrichSource=Y292ZXJQYWdlOzQ4MDAyNTQ7QVM6MTAxMTMxODA4MTQ5NTE1QDE0MDExMjMxMTA3MjU%3D&el=1_x_10&_esc=publicationCoverPdf


An Autoregressive Distributed Lag Modelling
Approach to Cointegration Analysis¤

M. Hashem Pesaran
Trinity College, Cambridge, England

Yongcheol Shin
Department of Applied Economics, University of Cambridge, England

First Version: February, 1995, Revised: January, 1997

Abstract
This paper examines the use of autoregressive distributed lag (ARDL) mod-

els for the analysis of long-run relations when the underlying variables are I(1).
It shows that after appropriate augmentation of the order of the ARDL model,
the OLS estimators of the short-run parameters are

p
T -consistent with the as-

ymptotically singular covariance matrix, and the ARDL-based estimators of the
long-run coe¢cients are super-consistent, and valid inferences on the long-run pa-
rameters can be made using standard normal asymptotic theory. The paper also
examines the relationship between the ARDL procedure and the fully modi�ed
OLS approach of Phillips and Hansen to estimation of cointegrating relations, and
compares the small sample performance of these two approaches via Monte Carlo
experiments. These results provide strong evidence in favour of a rehabilitation
of the traditional ARDL approach to time series econometric modelling. The
ARDL approach has the additional advantage of yielding consistent estimates of
the long-run coe¢cients that are asymptotically normal irrespective of whether
the underlying regressors are I(1) or I(0).

JEL Classi�cations: C12, C13, C15, C22.
Key Words: Autoregressive distributed lag model, Cointegration, I(1) and I(0)
regressors, Model selection, Monte Carlo simulation.

¤This is a revised version of a paper presented at the Symposium at the Centennial of Ragnar
Frisch, The Norwegian Academy of Science and Letters, Oslo, March 3-5, 1995. We are grateful
to Peter Boswijk, Clive Granger, Alberto Holly, Kyung So Im, Brendan McCabe, Steve Satchell,
Richard Smith, Ron Smith and an anonymous referee for helpful comments. Partial �nancial
support from the ESRC (Grant No. R000233608) and the Isaac Newton Trust of Trinity College,
Cambridge is gratefully acknowledged.



1. INTRODUCTION

Econometric analysis of long-run relations has been the focus of much theoreti-
cal and empirical research in economics. In the case where the variables in the
long-run relation of interest are trend stationary, the general practice has been to
de-trend the series and to model the de-trended series as stationary distributed
lag or autoregressive distributed lag (ARDL) models. Estimation and inference
concerning the long-run properties of the model are then carried out using stan-
dard asymptotic normal theory. (For a comprehensive review of this literature
see Hendry, Pagan and Sargan (1984) and Wickens and Breusch (1988)). The
analysis becomes more complicated when the variables are di¤erence-stationary,
or integrated of order 1 (I(1) for short). The recent literature on cointegration is
concerned with the analysis of the long run relations between I(1) variables, and
its basic premise is, at least implicitly, that in the presence of I(1) variables the
traditional ARDL approach is no longer applicable. Consequently, a large number
of alternative estimation and hypothesis testing procedures have been speci�cally
developed for the analysis of I(1) variables. (See the pioneering work of Engle and
Granger (1987), Johansen (1991), Phillips (1991), Phillips and Hansen (1990) and
Phillips and Loretan (1991).)
In this paper we re-examine the use of the traditional ARDL approach for the

analysis of long run relations when the underlying variables are I(1). We consider
the following general ARDL(p; q) model:

yt = ®0 + ®1t+

pX
i=1

Áiyt¡i + ¯
0xt +

q¡1X
i=0

¯¤0i ¢xt¡i + ut; (1.1)

¢xt = P1¢xt¡1 +P2¢xt¡2 + ¢ ¢ ¢+Ps¢xt¡s + "t; (1.2)

where xt is the k-dimensional I(1) variables that are not cointegrated among
themselves, ut and "t are serially uncorrelated disturbances with zero means and
constant variance-covariances, and Pi are k£ k coe¢cient matrices such that the
vector autoregressive process in ¢xt is stable. We also assume that the roots of
1¡Pp

i=1 Áiz
i = 0 all fall outside the unit circle and there exists a stable unique

long-run relationship between yt and xt.
We consider the problem of consistent estimation of the parameters of the

ARDL model both when ut and "t are uncorrelated, and when they are corre-
lated. In the former case we will show that the OLS estimators of the short-run
parameters, ®0, ®1, ¯, ¯

¤
1; :::;¯

¤
q¡1 and Á = (Á1; :::; Áp) are

p
T - consistent, and

the covariance matrix of these estimators has a well-de�ned limit which is as-
ymptotically singular such that the estimators of ®1 and ¯ are asymptotically
perfectly collinear with the estimator of Á. These results have the interesting
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implication that the OLS estimators of the long-run coe¢cients, de�ned by the
ratios ± = ®1=Á(1) and µ = ¯=Á(1), where Á(1) = 1¡

Pp
i=1 Ái, converge to their

true values faster than the estimators of the short run parameters ®1 and ¯. The
ARDL-based estimators of ± and µ are T

3
2 -consistent and T -consistent, respec-

tively. These results are not surprising and are familiar from the cointegration
literature. But more importantly, we will show that despite the singularity of
the covariance structure of the OLS estimators of the short-run parameters, valid
inferences on ± and µ, as well as on individual short run parameters, can be made
using standard normal asymptotic theory. Therefore, the traditional ARDL ap-
proach justi�ed in the case of trend-stationary regressors, is in fact equally valid
even if the regressors are �rst-di¤erence stationary.
In the case where ut and "t are correlated the ARDL speci�cation needs to be

augmented with an adequate number of lagged changes in the regressors before
estimation and inference are carried out. The degree of augmentation required
depends on whether q > s+ 1 or not. Denoting the contemporaneous correlation
between ut and "t by the k £ 1 vector d, the augmented version of (1.1) can be
written as

yt = ®0 + ®1t+

pX
i=1

Áiyt¡i + ¯
0xt +

m¡1X
i=0

¼0i¢xt¡i + ´t; (1.3)

where m = max(q; s + 1), ¼i = ¯
¤
i ¡ P0id, i = 0; 1; 2; :::;m ¡ 1, P0 = Ik, where

Ik is a k £ k identity matrix, ¯¤i = 0 for i ¸ q, and Pi = 0 for i ¸ s. In
this augmented speci�cation ´t and "t are uncorrelated and the results stated
above will be directly applicable to the OLS estimators of the short-run and
long-run parameters of (1.3). Once again traditional methods of estimation and
inference, originally developed for trend-stationary variables, are applicable to
�rst-di¤erence stationary variables. The estimation of the short-run e¤ects still
requires an explicit modelling of the contemporaneous dependence between ut and
"t. In practice, an appropriate choice of the order of the ARDLmodel is crucial for
valid inference. But once this is done, estimation of the long-run parameters and
computation of valid standard errors for the resultant estimators can be carried
out either by the OLS method, using the so-called �delta� method (¢-method)
to compute the standard errors, or by the Bewely�s (1979) regression approach.
These two procedures yield identical results and a choice between them is only a
matter of computational convenience.
The use of the ARDL estimation procedure is directly comparable to the semi-

parametric, fully-modi�ed OLS approach of Phillips and Hansen (1990) to esti-
mation of cointegrating relations. In the static formulation of the cointegrating
regression,

yt = ¹+ ±t+ µ
0xt + vt; (1.4)
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where ¢xt = et, and »t = (vt; e
0
t)
0 follows a general linear stationary process, the

OLS estimators of ± and µ are T
3
2 - and T -consistent, but in general the asymp-

totic distribution of the OLS estimator of µ involves the unit-root distribution
as well as the second-order bias in the presence of the contemporaneous correla-
tions that may exist between vt and et. Therefore, the �nite sample performance
of the OLS estimator is poor and in addition, due to the nuisance parameter
dependencies, inference on µ using the usual t-tests in the OLS regression of
(1.4) is invalid. To overcome these problems Phillips and Hansen (1990) have
suggested the fully-modi�ed OLS estimation procedure that asymptotically takes
account of these correlations in a semi-parametric manner, in the sense that the
fully-modi�ed estimators have the Gaussian mixture normal distribution asymp-
totically, and inferences on the long run parameters using the t-test based on the
limiting distribution of the fully-modi�ed estimator is valid.
The ARDL-based approach to estimation and inference, and the fully-modi�ed

OLS procedure are both asymptotically valid when the regressors are I(1), and a
choice between them has to be made on the basis of their small sample properties
and computational convenience. To examine the small sample performance of the
two estimators we have carried out a number of Monte Carlo experiments. Since
in practice the �true� orders of the ARDL(p;m) model are rarely known a priori,
in the Monte Carlo experiments we also consider a two-step strategy whereby p
and m are �rst selected (estimated) using either the Akaike Information Criterion
(AIC), or the Schwarz Bayesian Criterion (SC), and then the long-run coe¢cients
and their standard errors are estimated using the ARDL model selected in the
�rst step. We refer to these estimators as ARDL-AIC and ARDL-SC. The main
�ndings from these experiments are as follows:

(i) The ARDL-AIC and the ARDL-SC estimators have very similar small-sample
performances, with the ARDL-SC performing slightly better in the majority
of the experiments. This may re�ect the fact that the Schwartz criterion is
a consistent model selection criterion while Akaike is not.

(ii) The ARDL test statistics that are computed using the ¢-method (or equiv-
alently by means of the so-called Bewley�s regression), generally perform
much better in small samples than the test statistics computed using the
asymptotic formula that explicitly takes account of the fact that the regres-
sors are I(1).

(iii) The ARDL-SC procedure when combined with the ¢-method of comput-
ing the standard errors of the long-run parameters generally dominates the
Phillips-Hansen estimator in small samples. This is in particular true of the
size-power performance of the tests on the long-run parameter.

[3]



(iv) The Monte Carlo results point strongly in favor of the two-step estimation
procedure, and this strategy seems to work even when the model under con-
sideration has endogenous regressors, irrespective of whether the regressors
are I(1) or I(0).1

The plan of the paper is as follows: Section 2 examines the asymptotic prop-
erties of the OLS estimators in the context of a simple autoregressive model with
a linear deterministic trend and the k-dimensional strictly exogenous I(1) regres-
sors. Section 3 considers a more general ARDL model, allowing for residual serial
correlations and possible endogeneity of the I(1) regressors, and develops the re-
sultant asymptotic theory. In Section 4 the ARDL-based approach is compared to
the cointegration-based approach of Phillips and Hansen (1990). Section 5 reports
and discusses the results of Monte Carlo experiments. Some concluding remarks
are presented in Section 6. Mathematical proofs are provided in an Appendix.

2. The Lagged Dependent Variable Model with the Deter-
ministic Trend and Exogenous I(1) Regressors

Initially we consider the simple ARDL(1,0) model containing I(1) regressors and
a linear deterministic trend,

Á(L)yt = ®0 + ®1t+ ¯
0xt + ut; t = 1; :::; T; (2.1)

where yt is a scalar, Á(L) = 1¡ ÁL, with L being the one period lag operator, xt
is a k £ 1 vector of regressors assumed to be integrated of order 1:2

xt = xt¡1 + et; (2.2)

and ¯ is a k £ 1 vector of unknown parameters. Suppose that the following
assumptions hold:

(A1) The scalar disturbance term, ut, in (2.1) is iid(0; ¾2u),

1The case where the regressors are I(1) and cointegrated among themselves presents ad-
ditional identi�cation problems and is best analyzed in the context of a system of long-run
structural equations. On this see Pesaran and Shin (1995).

2Speci�cations (2.1) and (2.2) can easily be adapted to allow for inclusion of a drift term in
the xt process. Consider, for example, the process ¢xt = ¹x + et; and note that it can also be
written as xt = ¹xt+ ~xt, where ¢~xt = et: Therefore, substituting xt in (2.1) we have

Á(L)yt = ®0 + (®1 + ¯
0¹x)t+ ¯

0~xt + ut;

where ~xt follows an I(1) process without a drift.

[4]



(A2) The k-dimensional vector, et, in (2.2) has a general linear multivariate
stationary process,

(A3) ut and et are uncorrelated for all leads and lags such that xt is strictly
exogenous with respect to ut,

(A4) The I(1) regressors, xt, are not cointegrated among themselves, and

(A5) jÁj < 1, so that the model is dynamically stable, and a long-run relationship
between yt and xt exists.3

We shall distinguish between two types of parameters, the parameters capturing
the short-run dynamics (®0; ®1;¯ and Á), and the long run parameters on the
trended regressors, t and xt, de�ned by

± =
®1
1¡ Á; µ =

¯

1¡ Á: (2.3)

Applying the decomposition 1 ¡ ÁL = (1 ¡ Á) + Á(1 ¡ L) to (2.1), yt can be
expressed as

yt = ¹+ ±t+ µ
0xt + vt; (2.4)

where

¹ =
®0
1¡ Á ¡

µ
Á

1¡ Á
¶
±;

and

vt =

1X
i=0

Áiut¡i ¡ Á
1X
i=0

Áiµ0et¡i:

From (2.1) and (2.4) it is clear that yt and xt are individually I(1), but must be
cointegrated for (2.1) to be meaningful.4 Similarly, we obtain

yt¡1 = ¹1 + ±t+ µ
0xt + ·t; (2.5)

where ¹1 = ¹¡ ±, ·t = vt¡1 ¡ µ0et, and ·t is an I(0) process with variance ¾2·.
Our main aim is to derive the asymptotic properties of the OLS estimators of

the short-run as well as the long-run parameters in the context of the ARDL(1,0)

3Tests of the existence of long-run relationships between yt and xt, when it is not known a
priori whether xt are I(0) or I(1), are discussed in Pesaran, Shin and Smith (1996).

4A relationship between I(1) variables is said to be �stochastically cointegrated� if it is trend
stationary, while �deterministic cointegration� refers to the case where the cointegrating relation
is level stationary. For a discussion of these two types of cointegrating relations see Park (1992).
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model, (2.1). For expositional convenience, we transform (2.1) to the partitioned
regression model in the matrix form as,

yT = ZTb+ yT¡1Á+ uT ; (2.6)

where yT = (y1; :::; yT )
0, yT¡1 = (y0; :::; yT¡1)0, ¿ T = (1; :::; 1)0, tT = (1; :::; T )0,

XT = (x1; :::;xT )
0, ZT = (¿ T ; tT ;XT ), uT = (u1; :::; uT )

0, and b = (®0; ®1;¯
0)0.

Since our main interest is in the long-run coe¢cients on trended regressors, t and
xt, we also partition

ZT = (¿ T ;ST ); ST = (tT ;XT ); b =

µ
®0
c

¶
; c =

µ
®1
¯

¶
;

where the dimensions of ZT , ST , b and c are T £ (k+2), T £ (k+1), (k+2)£ 1
and (k + 1)£ 1, respectively.

Theorem 2.1. Under the assumptions (A1) - A(5), the OLS estimators of Á and
c = (®1;¯

0)0 in (2.6), denoted by Á̂T and ĉT , respectively, are
p
T -consistent, and

have the following asymptotic distributions:

p
T (Á̂T ¡ Á) a» N

½
0;
¾2u
¾2·

¾
; (2.7)

p
T (ĉT ¡ c) a» N

½
0;
¾2u
¾2·
¸¸0

¾
; (2.8)

where ¸ = (±;µ0)0 is a (k + 1) £ 1 vector of the long run parameters on trended
regressors, t and xt , and rank(¸¸0) = 1. In addition, the OLS estimator of
®0 in (2.6), denoted by ®̂0T , is also

p
T -consistent, but has the mixture normal

distribution. De�ning h = (b0; Á)0 and PZT = (ZT ;yT¡1), and denoting the OLS
estimator of h by ĥT , the covariance matrix of ĥT can be consistently estimated
by

V̂ (ĥT ) = ¾̂
2
uT (P

0
ZT
PZT )

¡1;

where ¾̂2uT = T
¡1(yT ¡PZT ĥT )0(yT ¡ PZT ĥT ), and V̂ (ĥT ) is asymptotically sin-

gular with rank equal to 2.

Theorem 2.1 shows that despite the presence of stochastic and deterministic trends
in the ARDL model, the OLS estimators of the short-run parameters are

p
T -

consistent.5 The second and more important �nding is that the OLS estimators

5Similar results can also be obtained in the case of regressors with higher order trend terms
such as t2; t3; :::; or I(2), I(3), ..., variables.
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of the coe¢cients on the trended regressors, ®1 and ¯, in (2.1) are asymptoti-
cally perfectly collinear with the OLS estimator of the coe¢cient on the lagged
dependent variable, Á; namely,

p
T
n
(ĉT ¡ c) + ¸(Á̂T ¡ Á)

o
= op(1): (2.9)

One interesting implication of this result is that the t-statistics for testing the sig-
ni�cance of individual impact coe¢cients on the I(1) regressors are asymptotically
equivalent, namely t^̄

i
¡ t^̄

j
= op(1) for i 6= j, and t^̄

i
¡ t®̂1 = op(1).6 Furthermore,

t^̄
i
¡ t(1¡Á̂) = op(1). Relation (2.9) in conjunction with

^̧
T ¡ ¸ = (ĉT ¡ c) + ¸(Á̂T ¡ Á)

(1¡ Á̂T )
; (2.10)

also yields an important result familiar from the cointegration literature, which
we set out in the following theorem:

Theorem 2.2. Under assumptions (A1) - (A5), the ARDL-based estimators of
the long-run parameters, given by ±̂T = ®̂1T=(1 ¡ Á̂T ), and µ̂T = ^̄

T=(1 ¡ Á̂T ),
converge to their true values ± and µ, respectively, at the rates, T

3
2 and T . Also

asymptotically, T
3
2 (±̂T¡±) and T (µ̂T¡µ) have the (mixture) normal distributions,

and therefore,

Q
1
2
~ST
D¡1
ST
(^̧T ¡ ¸) a» N

½
0;

¾2u
(1¡ Á)2 Ik+1

¾
; (2.11)

where ^̧T = (±̂T ; µ̂
0
T )
0, Q~ST

= DSTS
0
THTSTDST ; ST = (tT ;XT ), HT = IT ¡

¿ T (¿
0
T¿ T )

¡1¿ 0T ; and DST = Diag(T
¡3
2 ; T¡1Ik):

The �nding that the estimator of µ is T -consistent is known as the �super-
consistency� property in the cointegration literature. Since the limiting distri-
butions of T

3
2 (±̂T ¡ ±) and T (µ̂T ¡ µ) are (mixture) normal, optimal two-sided

inferences concerning ± and µ are possible. Notice also that the covariance matrix
of the estimator of ¸ simply depends on the inverse of the (scaled) demeaned
data matrix and the spectral density at zero frequency of (1 ¡ ÁL)¡1ut, namely
¾2u=(1 ¡ Á)2. Once again, this �nding is in line with the results already familiar
from the cointegration literature. (See Section 4 for further discussions.)

6For large enough T we have t^̄
i
¼ (1¡ Á) (¾·=¾u) : This explains the relatively low t-ratios

often obtained for short-run coe¢cients in ARDL regressions with I(1) variables, especially when
Á is close to unity.
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Hypothesis testing on the general linear restrictions involving the k + 1 di-
mensional long-run parameter vector, ¸, can be carried out in the usual manner.
Consider the g linear restrictions on ¸,

R¸ = r;

where R is a g£ (k+1) matrix and r is a g£ 1 vector of known constants. These
restrictions can be tested using the Wald statistic,

W = (R^̧T ¡ r)0
n
RCov(^̧T )R

0
o¡1

(R^̧T ¡ r) (2.12)

= (R^̧T ¡ r)0
(
(1¡ Á̂T )2
¾̂2uT

(S0THTST )

)
(R^̧T ¡ r):

Of special interest is the t-statistic on the individual coe¢cients given by

ti =
^̧
iT ¡ ¸i
ŝi

; i = 1; :::; k + 1; (2.13)

where the standard error of the i-th coe¢cient is consistently estimated by

ŝi =

s
¾̂2uT

(1¡ Á̂T )2
(S0THTST )

¡1
ii ;

and (S0THTST )
¡1
ii denotes the i-th diagonal element of (S

0
THTST )

¡1. By Theorem
2.2, the Wald statistic in (2.12) follows the asymptotic Â2 distribution with g
degrees of freedom, and t2i in (2.13) is distributed asymptotically as a Â

2 variate
with one degree of freedom.
It is worth noting that the results in Theorem 2.2 equally apply to the purely

autoregressive model with deterministic trend,

yt = ®0 + ®1t+ Áyt¡1 + ut; t = 1; :::; T; (2.14)

and to the ARDL(1,0) model without a deterministic trend,

yt = ®0 + ¯
0xt + Áyt¡1 + ut; t = 1; :::; T: (2.15)

For completeness the asymptotic results for these models are summarized in The-
orems 2.3 and 2.4.

Theorem 2.3. Under the assumptions (A1) and (A5), the OLS estimators of
®0; ®1 and Á in (2.14), denoted by ®̂0T , ®̂1T , and Á̂T , are all

p
T -consistent, and

asymptotically normally distributed. In addition,
p
T (®̂1T ¡®1) and

p
T (Á̂T ¡Á)

[8]



are perfectly collinear asymptotically and the covariance matrix of (®̂0T , ®̂1T , Á̂T )
is asymptotically singular with rank equal to 2. Furthermore, the estimator of the
long run parameter ±, computed by ®̂1T=(1 ¡ Á̂T ), has the following asymptotic
distribution:

T
3
2 (±̂T ¡ ±) a» N

½
0;

12¾2u
(1¡ Á)2

¾
: (2.16)

Theorem 2.4. Under assumptions (A1) - (A5), the OLS estimators of ®0; ¯ and
Á in (2.15), denoted by ®̂0T , ^̄T , and Á̂T are

p
T -consistent, and have the asymp-

totic (mixture) normal distributions. In addition,
p
T (®̂1T ¡®1) and

p
T (Á̂T ¡Á)

are perfectly collinear asymptotically and so the covariance matrix of (®̂0T , ^̄T ,
Á̂T ) is asymptotically singular with rank equal to 2. Furthermore, the estimator
of the long run parameter µ, given by µ̂T = ^̄T=(1¡ Á̂T ); has the mixture normal
distribution asymptotically, and

Q
1
2
~XT
T (µ̂T ¡ µ) a» N

½
0;

¾2u
(1¡ Á)2 Ik

¾
; (2.17)

where Q ~XT
= T¡2X0

THTXT :

Before considering a more general speci�cation of the ARDL model, we examine
the relation between the standard errors of the estimator of the long-run para-
meter, µ, obtained from our asymptotic results and the standard errors obtained
from the so called �delta� method (¢-method for short). For ease of exposition
we consider the simple model (2.15), and without loss of generality focus on the
case where xt is a scalar (i.e., k = 1). From Theorem 2.4 we have

Q
1
2
~XT
T (µ̂T ¡ µ) =

"
TX
t=1

(xt ¡ ¹x)2
# 1
2

(µ̂T ¡ µ) a» N
½
0;

¾2u
(1¡ Á)2

¾
; (2.18)

where Q ~XT
= T¡2

PT
t=1(xt ¡ ¹x)2 and ¹x = T¡1

PT
t=1 xt.

7 Hence a consistent
estimator of the variance of µ̂T is given by

V̂ (µ̂T ) =
¾̂2uT

(1¡ Á̂T )2
1PT

t=1(xt ¡ ¹x)2
: (2.19)

7In the case where xt is I(0) we have the same asymptotic result given by (2.18); that is,
since T¡1x0THTxT = Op(1) and

p
T (µ̂T ¡ µ) = Op(1), hence

(T¡1x0THTxT )
1
2

p
T (µ̂T ¡ µ) =

"
TX
t=1

(xt ¡ ¹x)2
# 1
2

(µ̂T ¡ µ) a» N
½
0;

¾2u
(1¡ Á)2

¾
:

[9]



The computation of the variance of µ̂T by the ¢-method involves approximating

µ̂T = g(ª̂T ) =
^̄
T

1¡ Á̂T
;

by a linear function of ª̂T = (^̄T ; Á̂T )
0, and then approximating the variance of

µ̂T by the variance of the resulting linear function. Denoting the estimator of the
variance of µ̂T by V̂¢(µ̂T ), we have

V̂¢(µ̂T ) =

Ã
@g(ª̂T )

@ª̂T

!0
V̂ (ª̂T )

Ã
@g(ª̂T )

@ª̂T

!

=

"
1

1¡ Á̂T
;

^̄
T

(1¡ Á̂T )2

#
¾̂2uT (R

0
THTRT )

¡1

264
1

1¡Á̂T

^̄
T

(1¡Á̂T )2

375 ;
where RT = (xT ;yT¡1). After some algebra V̂¢(µ̂T ) can be expressed as

V̂¢(µ̂T ) =
¾̂2uT

(1¡ Á̂T )2
h
1; µ̂T

i 1

DT

· P
(yt¡1 ¡ ¹y)2 ¡P(yt¡1 ¡ ¹y)(xt ¡ ¹x)

¡P(yt¡1 ¡ ¹y)(xt ¡ ¹x) P
(xt ¡ ¹x)2

¸ ·
1

µ̂T

¸
;

(2.20)
where the bar over the variable denotes the sample mean, and

DT =

"
TX
t=1

(xt ¡ ¹x)2
#"

TX
t=1

(yt¡1 ¡ ¹y)2
#
¡
"

TX
t=1

(yt¡1 ¡ ¹y)(xt ¡ ¹x)
#2
:

Using (2.5), recalling that ± = 0 and de�ning ~yt¡1 = yt¡1 ¡ ¹y; ~xt = xt ¡ ¹x and
~·t = ·t ¡ ¹·, we also have

~yt¡1 = µ~xt + ~·t; (2.21)

where ~·t follows a general linear stationary process. Substituting this result in
(2.20), we obtain

V̂¢(µ̂T ) =
¾̂2uT

(1¡ Á̂T )2
PT

t=1 ~·
2
t + (µ̂T ¡ µ)2

PT
t=1 ~x

2
t ¡ 2(µ̂T ¡ µ)

PT
t=1 ~xt~·t

(
PT

t=1 ~x
2
t )(
PT

t=1 ~·
2
t )¡ (

PT
t=1 ~xt~·t)

2
: (2.22)

Since ~·t is I(0) and ~xt is I(1), using the results familiar in the literature (see, for
example, Phillips and Durlauf (1986)), we have

T¡1
TX
t=1

~·2t = Op(1); T
¡2

TX
t=1

~x2t = Op(1); T
¡1

TX
t=1

~xt~·t = Op(1):

[10]



Also from the result of Theorem 2.4 we know that T (µ̂T ¡ µ) = Op(1). Hence,
taking probability limits of the right hand side of (2.22) as T !1, we have

V̂¢(µ̂T ) =
¾2u

(1¡ Á)2
1

T¡2
PT

t=1(xt ¡ ¹x)2
+ op(1):

Therefore, the standard error for the estimator of the long run parameter, µ,
obtained using the ¢-method is asymptotically the same as that given by (2.19),
which was derived assuming that xt is I(1). One important advantage of the
variance estimator obtained by the ¢-method over the asymptotic formula (2.19)
lies in the fact that it is asymptotically valid irrespective of whether xt is I(1) or
I(0), while the latter estimator is valid only if xt is I(1).
The two variance estimators clearly di¤er in �nite samples. Notice that (

PT
t=1 ~xt~·t)

2

is asymptotically negligible compared to other terms in (2.22), but it may not be
negligible in �nite samples, especially when ~xt and ~·t are correlated. For a com-
parison of the small sample properties of the two variance estimators see the
Monte Carlo results reported in Section 5.

3. General Autoregressive Distributed Lag Models with a
Deterministic Trend and I(1) Regressors

So far we have derived the estimation and asymptotic results for the simple
ARDL(1,0) model under the two strong assumptions (A1) and (A3). These as-
sumptions, however, are too restrictive in the time series analysis, and so the
estimation procedures developed in Section 2 are not expected to be robust to
the violation of these assumptions, because the limiting distributions of the OLS
estimators would then be inconsistent and/or depend on nuisance parameters.
We �rst relax the assumption (A1) and allow for the possibility of the error

process in (2.1) to be serially correlated. To deal with this serial correlation we
consider the ARDL(p; q) model,8

Á(L)yt = ®0 + ®1t+ ¯
0(L)xt + ut; (3.1)

where Á(L) = 1¡Pp
j=1 ÁjL

j, and ¯(L) =
Pq

j=0 ¯jL
j, and assume

(A1)0 The scalar disturbance, ut; in the ARDL(p; q) model (3.1) is iid(0; ¾2u).

8For convenience we use the same notation ut for the disturbance terms in (2.1) and (3.1). In
practice the order of the lag polynomials operating on di¤erent elements of xt could be di¤erent.
But this does not a¤ect the asymptotic theory presented below.
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Using the decomposition ¯(L) = ¯(1)+(1¡L)¯¤(L), where ¯(1) =Pq
j=0 ¯j;

¯¤(L) =
Pq¡1

j=0 ¯
¤
jL

j and ¯¤j = ¡
Pq

i=j+1 ¯i; (3.1) can be rewritten as

Á(L)yt = ®0 + ®1t+ ¯
0xt +

q¡1X
j=0

¯¤0j ¢xt¡j + ut; (3.2)

where we have used ¯ = ¯(1). Similarly, applying the decomposition Á(L) =
Á(1) + (1¡ L)Á¤(L) to (3.2), where Á(1) = 1¡Pp

i=1 Ái; Á
¤(L) =

Pp¡1
j=0 Á

¤
jL

j and
Á¤j =

Pp
i=j+1 Ái; we have

Á(1)yt = ®0 + ®1t+ ¯
0xt +

q¡1X
j=0

¯¤0j ¢xt¡j ¡ Á¤(L)¢yt + ut: (3.3)

Also from (3.1), we obtain

¢yt = [Á(L)]
¡1 f®1 + ¯0(L)¢xt +¢utg:

Substituting for ¢yt in (3.3) we have

yt = ¹0+±t+µ
0xt+

©
¯¤(L)¡ Á¤(L) [Á(L)]¡1 ¯(L)ª0

Á(1)
¢xt+

©
1¡ (1¡ L)Á¤(L) [Á(L)]¡1ª

Á(1)
ut;

(3.4)
where

¹0 =
®0 ¡ Á¤(1)±

Á(1)
; ± =

®1
Á(1)

; µ = µ(1) =
¯

Á(1)
:

Now it is easily seen that

(1¡ L)¯¤(L)¡ (1¡ L)Á¤(L) [Á(L)]¡1 ¯(L)
Á(1)

= µ(L)¡ µ;

and

1¡ (1¡ L)Á¤(L) [Á(L)]¡1
Á(1)

=
1¡ fÁ(L)¡ Á(1)g [Á(L)]¡1

Á(1)
= [Á(L)]¡1 ;

where µ(L) = ¯(L)=Á(L). Using these results and the decomposition µ(L) =
µ(1) + (1¡L)µ¤(L), where µ¤(L) =P1

j=0 µ
¤
jL

j and µ¤j = ¡
P1

i=j+1 µi in (3.4) we
obtain

yt = ¹0 + ±t+ µ
0xt + µ¤0(L)¢x+ [Á(L)]

¡1 ut: (3.5)

Matching the regressors on the right-hand-side of (3.2) with those in (3.5) we
�nally obtain

yt = ¹0 + ±t+ µ
0xt +

q¡1X
j=0

µ¤0j ¢xt¡j + ·0t; (3.6)

[12]



where ·0t =
P1

j=q µ
¤0
j et¡j + [Á(L)]

¡1 ut. Similarly,

yt¡i = ¹i + ±t+ µ
0xt +

q¡1X
j=0

g0ij¢xt¡j + ·it; i = 1; :::; p; (3.7)

where ¹i = ¹0 ¡ i±, i = 1; :::; p;

gij =

½ ¡µ if i > j
µ¤j¡1 if i · j

¾
; 0 · j · q ¡ 1; i = 1; :::; p;

and

·it =

( P1
j=q¡i µ

¤0
j et¡i¡j + [Á(L)]

¡1 ut¡i for i · q
¡µ0Pi¡q¡1

j=0 et¡q¡j + µ¤0(L)et¡i + [Á(L)]
¡1 ut for i > q

)
: (3.8)

As in the previous section, we rewrite the ARDL(p; q) model (3.2) in matrix
notations in the partitioned regression form,

yT = GT f +YTÁ+ uT (3.9)

= ®0¿ T + STc+WT¯
¤ +YTÁ+ uT ;

where yT = (y1; :::; yT )0, yT;¡i = (y1¡i; :::; yT¡i)0; for i = 1; :::; p;YT = (yT;¡1; :::;yT;¡p);
¢XT;¡j = (¢x1¡j ; :::;¢xT¡j) for j = 0; :::; q¡1;WT = (¢xT;0;¢xT;¡1; :::;¢xT;¡q+1);
¿ T = (1; :::; 1)0, tT = (1; :::; T )0, XT = (x1; :::;xT )

0, GT = (¿ T ; tT ;XT ;WT ) =
(¿ T ;ST ;WT ), uT = (u1; :::; uT )0, f = (®0; c0;¯¤0)0, c = (®1;¯0)0, ¯¤ = (¯¤00 ; :::;¯

¤0
q¡1)

0

and Á = (Á1; :::; Áp)
0: Note that the dimensions of YT , GT , Á and f are T£p; T £

(k + kq + 2); p£ 1 and (k + kq + 2)£ 1, respectively.
Theorem 3.1. Under assumptions (A1)0 and (A2) - (A5), the OLS estimators of
Á and c = (®1;¯

0)0 in the ARDL(p; q) model (3.9) are
p
T -consistent and have

the following asymptotic distributions:p
T (Á̂T ¡ Á) a» N ©0; ¾2uQ¡1

K

ª
; (3.10)

whereQK is the p£p positive de�nite covariance matrix of (·1t; ·2t; :::; ·pt)0 de�ned
by (3.8), and p

T (ĉT ¡ c) a» N ©0; ¾2u¿ 0pQ¡1
K ¿ p¸¸

0ª ; (3.11)

where ¸ = (±;µ0)0, ¿ p is the p-dimensional unit vector, and rank(¸¸0) = 1. The
OLS estimators of ®0 and ¯¤, denoted by ®̂0T and ^̄

¤
T ; are also

p
T -consistent, and

have the mixture normal distributions, asymptotically. The covariance matrix for
all the short-run parameters, h = (f 0;Á)0, is asymptotically singular with rank
equal to kq + 2, and can be consistently estimated in the usual way by

V̂ (ĥT ) = ¾̂
2
uT (P

0
GT
PGT )

¡1;

where PGT = (GT ;YT ); and ¾̂
2
uT = T

¡1(yT ¡PGT ĥT )0(yT ¡PGT ĥT ).
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From Theorem 3.1 we also �nd that
p
T (®̂1T ¡ ®1) and

p
T (^̄T ¡ ¯) are asymp-

totically perfectly collinear with
p
T (Á̂T ¡ Á); that is,

p
T
n
(ĉT ¡ c) + ¸[Á̂T (1)¡ Á(1)]

o
= op(1): (3.12)

where Á̂T (1) = 1¡
Pp

i=1 Á̂iT . It is also straightforward to show that

^̧
T ¡ ¸ = (ĉT ¡ c) + ¸[Á̂T (1)¡ Á(1)]

Á̂T (1)
: (3.13)

Using Theorem 3.1, and results (3.12) and (3.13), we have:

Theorem 3.2. Under the assumptions (A1)0 and (A2) - (A5), the OLS estimators
of the long-run parameters, ^̧T = (±̂T;µ̂

0
T )
0 = ĉT=Á̂T (1) in (3.9), converge to

their true values at faster rates than the estimators of the associated short-run
parameters, and follow the mixture normal distribution asymptotically. Therefore,

Q
1
2
~ST
D¡1
ST
(^̧T ¡ ¸) a» N

½
0;

¾2u
[Á(1)]2

Ik+1

¾
; (3.14)

where Q ~ST
and DST are as de�ned in Theorem 2.2.

Comparing Theorems 2.2 and 3.2, we �nd that the presence of the I(0) stationary
regressors in (3.9) (i.e., additional lagged changes in yt and the lagged changes
in xt which are introduced to deal with the residual serial correlation problem)
does not a¤ect the asymptotic properties of the OLS estimator of the long run
coe¢cients, ± and µ. Therefore, inferences concerning the long-run parameters
can be based on the same standard tests as given by (2.12) and (2.13). In this
more general case, however, the expression for the asymptotic variance of ^̧T is
still given by (2.11), but with ¾2u=(1¡Á)2 replaced by the more general expression,
¾2u=[Á(1)]

2.
We now relax assumption (A3) and allow for the possibility of endogenous

regressors, but con�ne our attention to the case where ¢xt can be represented by
a �nite order vector AR(s) process,9

P(L)¢xt = "t; (3.15)

where P(L) = Ik¡
Ps

i=1Pi, and Pi, i = 1; :::; s, are the k£ k coe¢cient matrices
such that the vector autoregressive process in ¢xt is stable. Here "t are assumed

9Our analysis can also allow for the inclusion of lagged¢y�s and a drift term in (3.15) without
a¤ecting the results presented below. On this see Boswijk (1995) and Pesaran, Shin and Smith
(1996).
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to be serially uncorrelated, but possibly contemporaneously correlated with ut;
namely, we assume that ³t = (ut;"

0
t)
0 follows the multivariate iid process with

mean zero and the covariance matrix,

§³³ =

·
¾2u §u"
§"u §""

¸
: (3.16)

We will, however, continue to assume that Cov(ut¡j; "t¡i) = 0 for i 6= j. No-
tice that despite this assumption the model is still general enough to allow not
only for the contemporaneous but also for cross-autocorrelations between ut and
¢xt. With assumption (A3) relaxed, the OLS estimators in (3.1) are no longer
consistent. To correct for the endogeneity of xt, we model the contemporaneous
correlation between ut and "t by the linear regression of ut on "t

ut = d
0"t + ´t; (3.17)

where using (3.16) we have d = §¡1"" §
0
u", and "t is strictly exogenous with respect

to ´t.
10 Substituting (3.15) in (3.17) we obtain:

ut = d
0P(L)¢xt + ´t; (3.18)

where ¢xt¡i�s, i = 0; :::; s; are also strictly exogenous with respect to ´t. The
parametric correction for the endogenous regressors is then equivalent to extending
the ARDL(p; q) model (3.2) to the more general ARDL(p;m) speci�cation,

Á(L)yt = ®0 + ®1t+ ¯
0xt +

m¡1X
j=0

¼0j¢xt¡j + ´t; (3.19)

where m = max(q; s + 1), and ¼i = ¯¤i ¡ P0id, i = 0; 1; 2; :::;m ¡ 1, P0 = Ik,
¯¤i = 0 for i ¸ q, and Pi = 0 for i ¸ s.
We now replace assumption (A3) by

(A3)0 The scalar disturbance ´t in (3.19) is iid(0; ¾2´), and¢xt follows the general
stationary process given by (3.15). Furthermore, ´t and "t are uncorrelated
such that xt and ¢xt¡j�s j = 0; :::;m¡1; are strictly exogenous with respect
to ´t in the ARDL(p;m) model (3.19).

There are two main di¤erences between the ARDL models de�ned by (3.2) and
(3.19). Firstly, the order of lagged¢xt�s in the two models can di¤er, and secondly,
the coe¢cients on ¢xt�s and their lagged values have di¤erent interpretations.
Although this alters the dynamic structure of the model, the basic framework for
estimating the long-run parameters and carrying out statistical inference on them
is the same as before.
10The relation (3.17) will be exact when the joint distribution of ut and "t is normal.
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Theorem 3.3. Under the assumptions (A3)0, (A4) and (A5), the OLS estimators
of the short-run parameters in (3.19), ®0, ®1, ¯, Á1; :::; Áp, ¼0; :::;¼m¡1, are

p
T -

consistent, and asymptotically have the (mixture) normal distributions. Further-

more,
p
T (ĉT ¡ c) is asymptotically perfectly collinear with

p
T
h
Á̂T (1)¡ Á(1)

i
,

where c = (®1;¯0)0 and Á(1) = 1 ¡
Pp

i=1 Ái, such that the covariance matrix for
the estimators of the short-run parameters is asymptotically singular with rank
equal to km+ 2. The asymptotic distribution of the OLS estimators of the long-
run parameters, ^̧T = (±̂T;µ̂

0
T )
0 = ĉT=Á̂T (1) in (3.19), are mixture normal and

therefore,

Q
1
2
~ST
D¡1
ST
(^̧T ¡ ¸) a» N

½
0;

¾2´
[Á(1)]2

Ik+1

¾
; (3.20)

where ¾2´ is the variance of ´t in (3.19), and Q ~ST
and DST are as de�ned in

Theorem 2.2.

There are no fundamental di¤erences between the results of Theorems 2.2, 3.2
and 3.3, as far as the estimators of the log-run parameters are concerned. A com-
parison of (2.11), (3.14) and (3.20) shows that the asymptotic distributions of the
estimators of the long-run parameters, ^̧T , under various assumptions discussed
above di¤er only by a scalar coe¢cient.
In sum, in the context of the ARDL model inference on the long run para-

meters, ± and µ, is quite simple and requires a priori knowledge or estimation of
the orders of the extended ARDL(p;m) model. Appropriate modi�cation of the
orders of the ARDL model is su¢cient to simultaneously correct for the resid-
ual serial correlation and the problem of endogenous regressors. Variances of the
OLS estimators of the long-run coe¢cients can then be consistently estimated
using either (3.20), or by means of the ¢-method applied directly to the long-
run estimators. Alternatively, one could compute the estimates of the long-run
coe¢cients and their associated standard errors using Bewley�s (1979) regression
procedure. Bewley�s method involves rewriting (3.19) as

Á(L)yt =
®0
Á(1)

+ ±t+µ0xt+
1

Á(1)

m¡1X
j=0

¼0j¢xt¡j¡
1

Á(1)

p¡1X
j=0

Á¤j¢yt¡j+
´t
Á(1)

; (3.21)

and then estimating it by the instrumental variable method using (1, t, xt, ¢xt,
¢xt¡1; :::;¢xt¡m+1, yt¡1, yt¡2; :::; yt¡p) as instruments. It is easy to show that the
IV estimators of ± and µ obtained using (3.21) are numerically identical to the
OLS estimators of ± and µ based on the ARDLmodel (3.19), and that the standard
errors of the IV estimators from the Bewley�s regression are numerically identical
to the standard errors of the OLS estimators of ± and µ obtained using the ¢-
method. (See, for example, Bardsen (1989).) The main attraction of the Bewley�s
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regression procedure lies in its possible computational convenience as compared to
the direct OLS estimation of (3.19) and computation of the associated standard
errors by the ¢-method.11

Finally, we note in passing that the results developed in this section also apply
to the case where the underlying regressors, xt, given by (3.15), are I(0). (See
footnote 7 and the Monte Carlo simulation results in Section 5.)

4. A Comparison of ARDL and Phillips-Hansen Procedures

Here we focus on the case where there exists a unique cointegrating relation be-
tween I(1) variables, yt and xt, possibly with a deterministic trend. The case
where there are multiple cointegrating relations among I(1) variables presents ad-
ditional di¢culties and will not be discussed in this paper. (See Pesaran and Shin
(1995), and the references cited therein).
Consider the following cointegrating relation

yt = ¹+ ±t+ µ
0xt + vt; (4.1)

¢xt = et: (4.2)

Although the OLS estimator of µ is shown to be T -consistent, (see Stock (1987)),
it has also been found that the �nite sample behavior of the OLS estimator is
generally very poor (see, for example, Banerjee et. al. (1986)). Especially, in the
presence of non-zero correlation between vt and et, OLS estimators of µ in (4.1)
are often heavily biased in �nite samples, and inferences based on them are invalid
because of the dependence of the limiting distribution of the OLS estimators on
nuisance parameters. For details see Phillips and Loretan (1991).
Broadly speaking, there are two basic approaches to cointegration analysis: Jo-

hansen�s (1991) maximum likelihood approach, and Phillips-Hansen�s (1990, PH)
fully modi�ed OLS procedure.12 The ARDL approach to cointegration analysis
advanced in this paper is directly comparable to the PH procedure, and we shall,
therefore concentrate on this method. PH assume that vt and et in (4.1) and (4.2)
follow the general correlated linear stationary processes:13

vt = A1(L)ut; et = A2(L)"t; (4.3)

11For a computer implementation of the ARDL approach using the ¢-method see Pesaran
and Pesaran (1997).
12There are also other related procedures such as the original two-step method of Engle and

Granger (1987), the leads and lags estimation procedure suggested by Saikkonnen (1991) and
Stock and Watson (1993), and the canonical method by Park (1992).
13For more details see Phillips and Solo (1992).
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where ³t = (ut; "
0
t)
0 are serially uncorrelated random variables with zero means

and a constant variance matrix given by (3.16). Assuming A1(L) and A2(L) are
invertible, (4.1) can be approximated as an ARDL speci�cation by truncating
the order of the in�nite order lag polynomials [A1(L)]

¡1 and [A2(L)]
¡1 such that

Á(L) ¼ [A1(L)]
¡1 and P(L) ¼ [A2(L)]

¡1, where the orders of the lag polyno-
mials Á(L) and P(L) are denoted by p and s, respectively. Then we obtain the
approximate �nite-dimensional ARDL(p;m) speci�cation,

Á(L)yt = fÁ(1)¹+ ±Á0(1)g+ ±Á(1)t+ Á(L)µ0xt +§u"§¡1"" P(L)¢xt + ´t; (4.4)

where Á0(1) = ¡Pp
i=1 iÁi, m = max(p; s+1), and by construction xt (and ¢xt�s)

are uncorrelated with ´t.
14 Notice that (4.4) is of the same form as (3.19), with

the following relations among their parameters: ®0 = Á(1)¹+ ±Á
0(1), ®1 = ±Á(1),

¯ = Á(1)µ, ¼0(L) = Á¤(L)µ0 + §u"§¡1"" P(L), where Á
¤(L) is de�ned by Á(L) =

Á(1) + (1 ¡ L)Á¤(L). Therefore, the ARDL speci�cation (4.4) and the static
cointegrating formulation, (4.1) and (4.2), represent alternative ways of modelling
the serial correlation in vt�s and the endogeneity of xt.
Here we examine the PH estimation procedure in the context of the ARDL

approximation for the yt process given by (4.4). Assuming that »t = (vt; e
0
t)
0 in

(4.1) and (4.2) satisfy the multivariate invariance principle, the long-run variance
matrix of »t is given by

15

» = Plim
T!1

(
T¡1

TX
t=1

»t»
0
t + T

¡1X̀
j=1

"
TX

t=j+1

»t»
0
t¡j +

TX
t=j+1

»t¡j»
0
t

#)
; (4.5)

where the lag truncation parameter ` increases with T , such that `=T ! 0, as
T !1. We also de�ne

¢» = Plim
T!1

T¡1
(

TX
t=1

»t»
0
t +
X̀
j=1

TX
t=j+1

»t»
0
t¡j

)
; (4.6)

and partition » and ¢» conformably to »t = (vt; e
0
t)
0,

» =

·
!vv ve
ev ee

¸
; ¢» =

·
¢vv ¢ve

¢ev ¢ee

¸
:

Although the use of the consistent estimator of the long-run variance matrix may
solve the serial correlation problem of vt, this does not address the endogeneity

14As before, ´t = ut ¡§u"§¡1"" "t:
15The random sequence {»tg is said to satisfy the multivariate invariance principle if it is

strictly stationary and ergodic with zero mean, �nite variances, and spectral density matrix
f»»(!) > 0: See Phillips and Durlauf (1986) for details.
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problem. To deal with the cross-correlations between vt and current and lagged
values of et, PH consider the modi�ed error process, denoted by v+t , which is
obtained from the regression of vt on et,

v+t = vt ¡ve¡1ee et; (4.7)

and v+t is not correlated with et by construction. Then, the long-run variance
matrix of »+t = (v+t ; e

0
t)
0, denoted by +» , is block diagonal; that is, 

+
» =

diag(!v¢e;ee), where
!v¢e = !vv ¡ve¡1ee ev; (4.8)

is the conditional long-run variance of vt given et. Combining (4.7) with (4.1) we
have the modi�ed �static� cointegrating relation,

y+t = ¹+ ±t+ µ
0xt + v+t ; (4.9)

where y+t = yt¡ve¡1ee ¢xt. There is still a bias term remaining in (4.9) because
of the correlation between xt and current and lagged values of v+t , which is given
by ¢+

ev = ¢ev ¡¢ee
¡1
ee ev. Removing this bias leads to the Phillips-Hansen

fully-modi�ed OLS estimators,264 ¹̂
+
T

±̂
+

T

µ̂
+

T

375 = (Z0TZT )¡1
8<:Z0T ŷ+T ¡

24 0
0
¿ k

359=;T¢̂+
ev; (4.10)

where ZT = (¿ T ; tT ;XT ), ¿ k is the k-dimensional column unit vector, and ŷ+T
and ¢̂+

ev are consistent estimators of y
+
t and ¢

+
ev, respectively.

Since the asymptotic distribution of the PH estimators of the coe¢cients on t
and xt (standardized by T

3
2 and T , respectively) is (mixture) normal, we have

Q
1
2
~ST
D¡1
ST
(^̧

+

T ¡ ¸) a» N f0; !v¢eIk+1g ; (4.11)

where ^̧
+

T = (±̂
+

T ; µ̂
+0
T )

0. This is directly comparable to the asymptotic result in
(3.20) obtained using the ARDL estimation procedure. First, we �nd that the
estimators of the long run parameters obtained using both the ARDL and the
PH estimation procedures have the mixture normal distributions asymptotically,
and standard inferences on µ using the Wald test are therefore asymptotically
valid. The main di¤erence between the ARDL-based estimators and the fully-
modi�ed OLS estimators lies in the computation of the long-run variance of the
disturbances in the cointegrating regression. In the case of the ARDL estimation
procedure the long run variance is given by ¾2´=[Á(1)]

2, while in the case of the
PH estimation procedure the long run variance is given by !v¢e. But as Theorem
8 below shows, ¾2´=[Á(1)]

2 and !v¢e are identical for the ARDL speci�cation (3.19)
(or (4.4)).
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Theorem 4.1. In the context of the ARDL speci�cation (3.19) or (4.4), the long-
run variance of the Phillips-Hansen modi�ed error process, v+t in (4.9) (denoted
by !v¢e) is equal to ¾2´=[Á(1)]

2, which is the spectral density at zero frequency of
[Á(L)]¡1 ´t in (3.19).

5. Finite Sample Simulation Results

In this section, using Monte Carlo techniques, we compare �nite sample properties
of the Phillips-Hansen fully-modi�ed estimators of the long-run parameters with
the ARDL-based estimators. In the case of the ARDL procedure we consider
two di¤erent estimators of the variance of the long-run parameter, namely the
asymptotic formula (2.19), which is valid only for I(1) regressors, and the ¢-
method formula given by (2.20), which is valid more generally, irrespective of
whether the regressors are I(1) or I(0). We also include the OLS estimators of the
long-run parameters in the static cointegrating relation as a rather crude bench
mark of interest.
We consider the following data generating process (DGP), where the observa-

tions on yt and xt are generated according to the �nite-order ARDL (1,0) model:

yt = ®+ Áyt¡1 + ¯xt + ut; (5.1)

xt ¡ Ãxt¡1 = ½ (xt ¡ Ãxt¡1) + "t; (5.2)

t = 1; :::; T; where (ut; "t) are serially uncorrelated and are generated according to
the following bivariate normal distribution:µ

ut
"t

¶
» N

½
0; =

µ
1 !12
!12 1

¶¾
: (5.3)

We set ® = 0; ¯ = 1; ½ = 0:2; and experiment with the following parameter
values: Á = (0:2; 0:8), !12 = (¡0:5; 0:0; 0:5), and T = (50; 100; 250).
We carry out two sets of experiments: In the �rst set (Experiments 1) we �x Ã

at 1 and therefore, generate xt as an I(1) process. In the second set (Experiments
2) we set Ã to 0.95 such that xt is I(0) but with a high degree of persistence. It is
worth noting that in general (irrespective of whether xt is I(1) or I(0)), the long
run parameter on xt in (5.1) is given by

µ =
¯ + (1¡ Ã)!12

1¡ Á ;

and µ will be invariant to the parameters of the xt process only if !12 = 0 (i.e.,
xt is strictly exogenous in (5.1)) and/or when Ã = 1 (i.e., xt is I(1)). For a more
general treatment of this issue see Pesaran (1997).
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Before discussing the simulation results, notice that when !12 = 0, the correct
speci�cation is the ARDL(1,0) model, and when !12 6= 0; it is the ARDL(1,2)
model. (See Section 3). But since in general the true order of the ARDL model is
not known a priori, we estimated 30 di¤erent ARDLmodels, namely ARDL(p;m),
p = 1; 2; :::; 5, m = 0; 1; 2; :::; 5, and used the Akaike Information Criterion (AIC),
and the Schwarz Criterion (SC) to select the orders of the ARDL model before
estimating the long-run coe¢cients and carrying out inferences. The estimates
obtained by these two-step procedures will be referred to as ARDL-AIC, and
ARDL-SC, respectively.
The simulation results are summarized in Tables 1a-1f and 2a-2f for Experi-

ments 1 and 2, respectively. Summary statistics included in these tables are:

Bias = µ̂R¡ µ0, where µ0 is the true value of the long-run coe¢cient µ, µ̂R is the
mean of the estimates of µ across replications, i.e., µ̂R =

PR
i=1 µ̂i=R and R

is the number of replications,

STDE µ = Standard error of the estimator, µ̂i, across replications,

RMSE = The root mean squared error of µ̂i,
µq

R¡1
PR

i=1(µ̂i ¡ µ0)2
¶
;

Mean t = Average t-statistic for testing µ = µ0 against µ 6= µ0,
STD t = Standard deviations of the t-statistic for testing µ = µ0 against µ 6= µ0,
SIZE = Empirical size of the t-test of the null hypothesis µ = µ0 against µ 6= µ0,
POWER+ = Empirical power of the t-test under the alternatives µ = 1:05µ0,

POWER¡ = Empirical power of the t-test under the alternatives µ = 0:95µ0.

The nominal size of the tests is set at 5 percent, and the number of replications
at R = 2; 500.16

Tables 1a-1f summarize the results for the correctly speci�ed ARDL model
(namely the ARDL(1,0) when !12 = 0, and the ARDL(1,2) for !12 6= 0), the
estimates based on ARDL-AIC and the ARDL-SC procedures, and the Phillips-
Hansen fully modi�ed estimators based on the Bartlett�s window for window sizes
0, 5, 10, 20 and 40, which are reported under PH(0), PH(5), etc.
In the case where !12 = 0, the bias of the ARDL estimators is much smaller

than that of the PH estimators. The extent of the bias crucially depends on the
value of Á, and not surprisingly increases as Á is increased from 0.2 in Table 1a

16In a very small number of replications Á(1) was estimated to be in excess of 0.99. These
cases are not included in the summary results.
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to 0.8 in Table 1d. Also the RMSE�s of the ARDL and the PH estimators are
very similar when Á = 0:2, but diverge considerably for Á = 0:8. As can be seen
from Table 1d, for T = 50, the RMSE of the ARDL estimators is about one-third
of the RMSE of the PH estimators. The empirical sizes of the ARDL procedure
are much more satisfactory than the ones obtained using the PH fully modi�ed
estimators. When !12 = 0, the sizes of the tests based on the ARDL estimators
are generally reasonable and much nearer to their nominal size of 5 percent, than
the sizes of tests based on the PH estimators.
Empirical sizes of the tests based on the ARDL estimators computed using the

¢-method tend to be much closer to their nominal values, than those computed
using the asymptotic formula. This is particularly so when T is small. Therefore,
in what follows, we shall focus on the ARDL test statistics that are computed
using the ¢-method.
Another general feature of the simulation results is the slight superiority of the

ARDL-SC method over the ARDL-AIC procedure; which is in accordance with
the fact that the SC is a consistent model selection criterion, while the AIC is
not. (See, for example, Lütkepohl (1991, Chapter 4)).
Finally, there is a clear tendency for the tests based on the PH method to

over-reject in small samples, and the extent of this over-rejection increases with
Á, and declines only slowly with the sample size, T . For example, for Á = 0:8
and T = 100, the empirical sizes of the t-tests based on the PH method exceed
41 percent for all the �ve window sizes, and even for T = 250 do not fall below
20 percent. (See the column headed �SIZE� in Table 1d). By contrast the size of
the test based on the ¢-method in Table 1d is reasonable even for T = 50. For
the correct ARDL(1,0) speci�cation, the size of the test based on the ¢-method
is 7.2 percent and increases to 12.8 and 8.6 percents for the ARDL-AIC and the
ARDL-SC procedures, respectively.
Similar results are obtained in the case where !12 = 0:5, and hence xt and ut

are contemporaneously correlated. The ARDL estimators are now substantially
less biased than the PH estimators. (See the column headed �BIAS� in Table
1e). Once again the performance of the PH estimators improves with the sample
size, but very slowly. For T = 250, the bias of the PH estimators for the most
favorable window size is still around -0.14, but the biases of the ARDL estimators
lie between -0.0017 and 0.0024. The size performance of the two test procedures
also closely mirrors these di¤erences in the degree of biases of the estimators.
The empirical size of the tests based on the PH method ranges between 60 to 85
percent for T = 50, and falls to around 21 percent for T = 250 and a window size
of 20. The size of the tests based on the ARDL procedure, when the ¢-method
is used to compute the variances, is at most 13 percent for T = 50, and lies in the
range 5.2 to 7.7 percent when T is increased to 250. (See Table 1e).
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Due to the large size distortions of the PH procedure, the results presented in
Tables 1a-1f do not allow proper comparisons of the power properties of the two
test procedures. But for T = 250 where the size distortion of the PH test is not
too excessive, the ARDL procedure consistently outperforms the PH method. For
example, in the case of Á = 0:8, !12 = 0:5; µ = 5, and T = 250, the power of the
ARDL procedure in rejecting the false null hypothesis, µ = 0:95µ0, is consistently
above 98 percent while the power of the PH method is at most 62 percent even
though its associated size is 85 percent! There seems also to be a tendency for the
power function of the ARDL procedure in the case where !12 6= 0 and T small
to be asymmetric around µ = µ0; showing a higher power for the alternatives
exceeding µ0 as compared to the alternatives falling below µ0.
The results for Experiments 2 with an I(0) regressor are summarized in Tables

2a-2f. These results are very similar to those obtained for Experiments 1. The
overall performances of the ARDL-based methods with variances estimated using
the ¢-method are satisfactory for most cases, though slightly worse than those
obtained for Experiments 1. (In particular, the biases are slightly larger and the
tests are less powerful.) But, the performance of the PH estimators are still very
poor, especially when T is small.
Overall, the simulation results show that the ARDL-based estimation proce-

dure based on the ¢-method developed in the paper can be reliably used in small
samples to estimate and test hypotheses on the long-run coe¢cients in both cases
where the underlying regressors are I(1) or I(0). This is an important �nding since
the ARDL approach can avoid the pretesting problem implicitly involved in the
cointegration analysis of the long-run relationships. (Also see Cavanaugh et. al.
(1995) and Pesaran (1997).)
Before concluding this section, we note that the comparison of the small sam-

ple performance of the ARDL-based and the PH estimators is not comprehensive
in the sense that the data generating process we have used is biased in favor of the
ARDL procedure (see Inder (1993)). In this regard, it is more appropriate to con-
sider the relative performances of the ARDL and the PH estimators using more
general DGP�s, such as (4.1) and (4.2), that can allow for moving average error
processes. In the working paper version of this paper we also considered Monte
Carlo experiments using (4.1) and (4.2) as data generating processes. In one set of
experiments (called DGP2) we used �rst-order bivariate vector moving-average
processes to generate the errors, vt and et, and in another set of experiments
(called DGP3) we generated vt and et according to �rst-order vector autoregres-
sive processes. Neither of these DGP�s allows transformations of the model so
that xt could become strictly exogenous with respect to the disturbances of the
augmented ARDL model. We found that the simulation results based on these
DGP�s are less clear-cut, but the ARDL-based estimator using the ¢-method
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still outperforms the PH estimator in most experiments, especially for small T .
Broadly speaking, the relative small sample performance of the two estimators
seems to depend on the signal-to-noise ratio, V ar(et)=V ar(vt), with the ARDL
approach dominating the PH method when this ratio is low, and vice versa. This
is clearly an area for further research.17

6. Concluding Remarks

The theoretical analysis and the Monte Carlo results presented in this paper pro-
vide strong evidence in favor of a rehabilitation of the traditional ARDL approach
to time series econometric modelling. The focus of this paper, however, has been
exclusively on single equation estimation techniques and the important issue of
system estimation is not addressed here. Such an analysis inevitably involves
the problem of identi�cation of short-run and long-run relations and demands
a structural approach to the analysis of econometric models. The problem of
long-run structural modelling in the context of an unrestricted VAR model has
been addressed elsewhere. (See, for example, Johansen (1991), Phillips (1991)
and Pesaran and Shin (1995)). An alternative procedure, which takes us back to
the Cowles Commission approach, would be to extend the ARDL methodology
advanced in this paper to systems of equations subject to short-run and/or long-
run identifying restrictions. (See, for example, Boswijk (1995) and Hsiao (1995).)
We hope to pursue this line of research in the future; thus establishing a closer
link between the recent cointegration analysis and the traditional simultaneous
equations econometric methodology.

17We are grateful to Peter Boswijk and an anonymous referee for drawing our attention to
this point.
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Appendix: Mathematical Proofs
For notational convenience we use �

p!�, �)� and � a»� to signify the convergence
in probability, the weak convergence in probability measure, and the asymptotic
equality in distribution. All sums are over t = 1; 2; :::; T .
In the case where the regressors are stationary the usual method of deriving

the asymptotic distribution of the OLS estimators of the short-run parameters in,
for example, (2.1), would be to apply the Slutsky�s theorem to (P0ZTPZT )

¡1 and
P0ZTuT , separately, where PZT = (¿ T ; tT ;XT ;yT¡1); after appropriately scaling
it by the sample size. (The appropriate scaling of P0ZTPZT in this case is given
by DPTPZTP

0
ZT
DPT where DPT = Diag(T

¡ 1
2 ; T¡

3
2 ; T¡1Ik; T¡1):) This procedure

cannot, however, be applied to dynamic time series models with trended regres-
sors (irrespective of whether the trends are stochastic or deterministic), because
P0ZTPZT does not converge to a non-singular matrix even if the individual elements
of P0ZTPZT are appropriately scaled by the sample size.
In what follows the asymptotic theory will be developed using the partitioned

regression techniques and then writing individual elements of the OLS estimators
of the short-run parameters as ratios of random variables, thus avoiding the need
to apply the Slutsky�s theorem to (P0ZTPZT )

¡1 directly.
Since Theorems 2.1 - 2.4 are special cases of Theorems 3.1 and 3.2, and can

be proved in a similar manner, we omit their proofs to save space.

Proof of Theorem 3.1.
Before deriving the asymptotic distributions of the OLS estimators of the short

run parameters in (3.9) we derive some preliminary results. De�ne

qKTuT = T
¡ 1
2K0

TuT ; QKT
= T¡1K0

TKT ;

q
GTuT

= DGTG
0
TuT =

·
DZTZ

0
TuT

T¡
1
2W0

TuT

¸
=

·
q
ZT uT

qWT uT

¸
;

q
GTKT

= DGTG
0
TKT =

·
DZTZ

0
TKT

T¡
1
2W0

TKT

¸
=

·
q
ZTKT

qWTKT

¸
;

Q
GT
= DGTG

0
TGTDGT =

·
DZTZ

0
TZTDZT T¡

1
2DZTZ

0
TWT

T¡
1
2W0

TZTDZT T¡1W0
TWT

¸
=

·
Q

ZT
Q

ZTWT

Q0
ZTWT

Q
WT

¸
;

whereKT = (·1T ;·2T ; :::;·pT ) with ·iT = (·i1; ·i2; :::; ·iT )0 for i = 1; :::; p;DGT =

Diag(T¡
1
2 ; T¡

3
2 ; T¡1Ik; T¡

1
2 Ikq) and DZT = Diag(T¡

1
2 ; T¡

3
2 ; T¡1Ik): Using the

results in Phillips and Durlauf (1986), it is easily seen that as T !1,

qKTuT

p! qKu; QKT

p! Q
K
; (A.1)
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q
GT uT

) q
Gu
=

·
qZu
qWu

¸
; q

GTKT
) q

GK
=

·
qZK
qWK

¸
; (A.2)

Q
GT
) Q

G
=

·
QZ 0
0 QW

¸
; (A.3)

where qKu, qWu, qWK,QK
andQW are (�nite) probability limits of qKT uT , qWTuT ,

qWTKT
, QKT

and QWT
, respectively, and qZu, qZK and QZ are functionals of

Brownian motions given by

qZu =

24 Bu(1)R 1
0
rdBu(r)R 1

0
B0e(r)dBu(r)

35 ; qZK =
24 BK(1)R 1

0
rdBK(r)R 1

0
B0e(r)dBK(r)

35 ;

QZ =

264 1 1
2

R 1
0
Be(r)dr

1
2

1
3

R 1
0
rBe(r)drR 1

0
B0e(r)dr

R 1
0
rB0e(r)dr

R 1
0
B0e(r)Be(r)dr

375 :
Bu(r) is the scalar Brownian motion process with variance equal to r times ¾2u
(since ut is not serially correlated), Be(r) is a k-dimensional Brownian motion on
r 2 [0; 1] with variance equal to r times the long-run variance of et; and BK(r)
is the p-dimensional Brownian motion on [0,1] with variance equal to r times the
long run variance of (·1T ;·2T ; :::;·pT ). The long-run variance of a stochastic
process is given by 2¼ multiplied by the spectral density of the process at zero
frequency. Notice that QZ (or QG) is of the full column rank by assumption (A4),
and the elements in QZ involving Be(r) are random even asymptotically.
Since ·1T ;·2T ; :::;·pT ; and 1; t; xt; ¢xt; ¢xt¡1; :::;¢xt¡q+1 are all distrib-

uted independently of ut such that BK(r) and Be(r) are independent of Bu(r), it
follows that

q
Ku

a» N ¡0; ¾2uQ·

¢
; q

Gu

a»MN ¡0; ¾2uQG

¢
; (A.4)

where MN denotes the mixture normal distribution. For details concerning the
theory of the mixture normal distribution see, for example, Phillips (1991). How-
ever, this (mixture) normality result does not hold in the case of qGK , because xt
and ¢xt¡i�s (i = 0; :::; q ¡ 1) are correlated with ·it, i = 1; :::; p.
The OLS estimators of f and Á in (3.9), denoted by f̂T and Á̂T , satisfy the

relations,
Á̂T ¡ Á = (Y0

TMGTYT )
¡1
(Y0

TMGTuT ) ; (A.5)

f̂T ¡ f = (G0
TGT )

¡1
h
G0
TuT ¡G0

TYT

³
Á̂T ¡ Á

´i
; (A.6)

where MGT = IT ¡GT (G
0
TGT )

¡1G0
T with IT being the T £ T identity matrix.

Using (3.7), YT can be expressed as

YT = GT¡+KT ; (A.7)
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where

¡ =

2664
¹1 ¹2 ¢ ¢ ¢ ¹p
± ± ¢ ¢ ¢ ±
µ µ ¢ ¢ ¢ µ
g1 g2 ¢ ¢ ¢ gp

3775 ;
and gi = (g0i0;g

0
i1; :::;g

0
i;q¡1)

0 is a kq£1 vector of parameters. Using (A.7) we have
Y0
TMGTYT = K

0
TKT ¡K0

TGT (G
0
TGT )

¡1
G0
TKT ;

Y0
TMGTuT = K

0
TuT ¡K0

TGT (G
0
TGT )

¡1
G0
TuT ;

where we usedG0
TMGT = 0: Using (A.1) - (A.3), it can be shown that as T !1,
T¡1 (Y0

TMGTYT ) = QKT
+ op(1)

p! QK ; (A.8)

T¡
1
2 (Y0

TMGTuT ) = qKT uT + op(1)
p! qKu: (A.9)

Multiplying (A.5) by
p
T , and using (A.8), (A.9) and (A.4), we obtain (3.10).

Next, substituting YT from (A.7) in (A.6), we obtain

f̂T ¡f = (G0
TGT )

¡1
G0
TuT ¡¡

³
Á̂T ¡ Á

´
¡(G0

TGT )
¡1
G0
TKT

³
Á̂T ¡ Á

´
: (A.10)

De�ne
dT =

³
f̂T ¡ f

´
+ ¡

³
Á̂T ¡ Á

´
: (A.11)

Multiplying (A.11) by D¡1
GT
, using (A.1) - (A.3) and (A.10), and applying the

continuous mapping theorem (see, for example, Phillips and Durlauf (1986)), it
follows that

D¡1
GT
dT = Q

¡1
GT
qGT uT + op(1)) Q¡1

G qGu: (A.12)

Since qGu is shown to be mixture normal in (A.4), hence

Q¡1
G qGu

a»MN ¡0; ¾2uQ¡1
G

¢
; Q

1
2
GT
D¡1
GT
dT

a» N ¡0; ¾2uIk+kq+2¢ :
Next, pre-multiplying (A.12) by the diagonal matrix, Diag(1; T¡1; T¡

1
2 Ik; Ikq),

we have

p
TdT =

2664
1 0 0 0
0 T¡1 0 0

0 0 T¡
1
2 Ik 0

0 0 0 Ikq

3775Q¡1
GT
qGT uT + op(1) (A.13)

)

2664
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 Ikq

3775Q¡1
G qGu

a»MN

8>><>>:0;
2664
Q11Z 0 0 0
0 0 0 0
0 0 0 0
0 0 0 Q¡1

W

3775
9>>=>>; ;

[A.3]



where Q11Z is the (1,1) element of Q¡1
Z . The above result can be rewritten sepa-

rately for ®̂0T ; ĉT and ^̄
¤
T as

p
T (®̂0T ¡ ®0) +

¡
¹1; ¹2; :::; ¹p

¢p
T
³
Á̂T ¡ Á

´
= dZu;1 + op(1); (A.14)

p
T (ĉT ¡ c) + ¸¿ 0p

p
T
³
Á̂T ¡ Á

´
= op(1); (A.15)

p
T
³
^̄¤
T ¡ ¯¤

´
+ (g1;g2; :::;gp)

p
T
³
Á̂T ¡ Á

´
= Q¡1

W qWu + op(1); (A.16)

where ¿ p is a p£1 vector of unity and dZu;1 is the �rst element of Q¡1
Z qZu. Using

(3.10) in (A.15) we obtain (3.11). It is also clear from above results that the
OLS estimators of ®0 and ¯

¤ (standardized by
p
T ) have the (mixture) normal

distributions asymptotically.
Finally, using (3.10), (3.11), and (A.13)-(A.16), it is easily seen that a consis-

tent estimator of the variance of ĥT is given by V̂ (ĥT ) = ¾̂2uT (P
0
GT
PGT )

¡1 with
the rank of V̂ (ĥT ) being equal to kq + 2.

Proof of Theorem 3.2.
Partition dT = (aT ; s0T ;w

0
T )
0 conformably to GT = (¿ T ;ST ;WT ); then sT is

given by
sT =

p
T (ĉT ¡ c) + ¸¿ 0p

p
T
³
Á̂T ¡ Á

´
: (A.17)

Using (A.10) and (A.11), (s0T ;w
0
T )
0 can be expressed as·

sT
wT

¸
=

·
S0THTST S0THTWT

W0
THTST W0

THTWT

¸¡1 ·
S0THTuT
W0

THTuT

¸
(A.18)

¡
·
S0THTST S0THTWT

W0
THTST W0

THTWT

¸¡1 ·
S0THTKT

W0
THTKT

¸³
Á̂T ¡Á

´
:

Let
q ~ST uT = DSTS

0
THTuT ; Q ~ST

= DSTS
0
THTSTDST ;

where DST = Diag(T
¡ 3
2 ; T¡1Ik). Then, it is also easily seen that as T !1,

q ~STuT ) q ~Su =

" R 1
0
(r ¡ 1

2
)dBu(r)R 1

0
~B0e(r)dBu(r)

#
; (A.19)

Q ~ST
) Q ~S =

"
1
12

R 1
0
(r ¡ 1

2
)~Be(r)drR 1

0
(r ¡ 1

2
)~B0e(r)dr

R 1
0
~B0e(r)~Be(r)dr

#
; (A.20)

[A.4]



where ~Be(r) = Be(r)¡
R 1
0
Be(r)dr is a k-dimensional demeaned Brownian motion

on [0; 1]. Since ~Be(r) is also distributed independently of Bu(r), we obtain as in
(A.4),

q ~Su
a»MN ¡0; ¾2uQ ~S

¢
: (A.21)

Multiplying (A.18) by the diagonal matrix, Diag(D¡1
ST
; T

1
2 ), using (A.19)-(A.21)

and noting that

DSTS
0
THTWT = Op(1); T

¡1W0
THTWT = Op(1);

DSTS
0
THTKT = Op(1); T¡

1
2W0

THTKT = Op(1);

we obtain
D¡1
ST
sT ) Q¡1

~S
q ~Su

a»MN
³
0; ¾2uQ

¡1
~S

´
;

and therefore,

Q
1
2
~ST
D¡1
ST
sT

a» N ¡0; ¾2uIk+1¢ : (A.22)

Finally, by (3.13) and (A.15) we have

^̧
T ¡ ¸ = sT

Á̂T (1)
: (A.23)

Multiplying (A.23) by Q
1
2
~ST
D¡1
ST
, using (A.22) and noting that Á̂T (1)

p! Á(1); we
obtain (3.14).

Proof of Theorem 3.3 can be established in a similar manner and is omitted to
save space.

Proof of Theorem 4.1.
Consider the dynamic ARDL(p;m)model (3.19) (or (4.4)), and its static coun-

terpart (4.1). Applying the decomposition Á(L) = Á(1) + (1¡ L)Á¤(L) to (3.19)
we have

yt =
®0
Á(1)

+ ±t+ µ0xt +
¼0(L)
Á(1)

¢xt +
´t
Á(1)

¡ Á
¤(L)
Á(1)

¢yt: (A.24)

Substituting for ¢yt = ± + µ
0¢xt +¢vt from (4.1) in (A.24), we have

yt = ¹+ ±t+ µ
0xt +

¼0(L)
Á(1)

¢xt +
´t
Á(1)

¡ Á
¤(L)
Á(1)

(µ0¢xt +¢vt) : (A.25)

Using (A.25), vt in (4.1) can be expressed as

vt =
¼0(L)¡ Á¤(L)µ0

Á(1)
¢xt +

´t
Á(1)

¡ Á
¤(L)
Á(1)

¢vt: (A.26)

[A.5]



De�ning kt = (´t; vt;¢x
0
t)
0 = (´t; vt; e

0
t)
0, andª(L) =

h
1
Á(1)
; ¡Á

¤(L)(1¡L)
Á(1)

; ¼
0(L)¡Á¤(L)µ0

Á(1)

i
,

then the spectral density of vt = ª(L)kt is given by

2¼fvv(!) = ª(e
iw)V ar(kt)ª

0(e¡iw);

where

V ar(kt) =

24 ¾2´ ¾´v 0
¾0´v ¾2v §ve
0 §0ve §ee

35 :
Hence, the spectral density of vt at zero frequency is given by

2¼fvv(0) =
¾2´ + [¼

0(1)¡ Á¤(1)µ0]§ee [¼(1)¡ Á¤(1)µ]
[Á(1)]2

: (A.27)

The Phillips-Hansen semi-parametric correction is equivalent to removing the sec-
ond part of (A.27), by subtracting the terms involving ¢xt from vt. Using (A.26)
we have the following expression for the modi�ed disturbance term, v+t , in the
Phillips-Hansen�s procedure:

v+t = vt ¡
¼0(L)¡ Á¤(L)µ0

Á(1)
¢xt =

´t
Á(1)

¡ Á
¤(L)
Á(1)

¢vt = ª
+(L)k+t ;

where k+t = (´t; vt)
0; and ª+(L) =

h
1
Á(1)
; ¡Á

¤(L)(1¡L)
Á(1)

i
: Therefore, the spectral

density of v+t at zero frequency is given by

2¼fv+v+(0) = ª
+(0)V ar(k+t )ª

+0(0) =
¾2´

[Á(1)]2
:

Using (4.7) we also have
fv+v+(0) = Bf»»(0)B

0;

where B = [1;¡ve¡1ee ]. By de�nition » = 2¼f»»(0), and

2¼fv+v+(0) = B»B
0 = !vv ¡ve¡1ee ev =

¾2´

[Á(1)]2
:

Hence, by (4.8) !v¢e = ¾2´= [Á(1)]
2.

[A.6]
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